DOA identifiability for rotationally invariant arrays
نویسنده
چکیده
منابع مشابه
Identifiability Issues for Rot at ionally Invariant Arrays
The popular ESPRIT algorithm provides a computationally eficient approach for direction of arrival (DOA) estimation in situations where the sensor array is composed of two identical translated subarrays. One of the key advantages of ESPRIT is that the subarrays need not be calibrated in order to obtain the DOA estimates. In this paper, the problem of DOA estimation using sensor arrays composed ...
متن کاملIdentifiability and manifold ambiguity in DOA estimation for nonuniform linear antenna arrays
This paper considers the direction-of-arrival (DOA) estimation identifiability problem for uncorrelated Gaussian sources and nonuniform antenna arrays. It is now known that sparse arrays always suffer from manifold ambiguity, which arises due to linear dependence amongst the columns of the array manifold matrix (the “steering vectors”). While the standard subspace DOA estimation algorithms such...
متن کاملDOA and Polarization Estimation Using an Electromagnetic Vector Sensor Uniform Circular Array Based on the ESPRIT Algorithm
In array signal processing systems, the direction of arrival (DOA) and polarization of signals based on uniform linear or rectangular sensor arrays are generally obtained by rotational invariance techniques (ESPRIT). However, since the ESPRIT algorithm relies on the rotational invariant structure of the received data, it cannot be applied to electromagnetic vector sensor arrays (EVSAs) featurin...
متن کاملتخمین جهت منابع با استفاده از زیرفضای ختری-رائو
This paper deals with Direction of Arrival (DOA) Estimation using Uniform linear array (ULA) for the case of more sources than sensors in the array processing. Khatri-Rao subspace approach, introduced for DOA estimation for this, in non-stationary signal model. The technique will be shown to be capable to handle stationary signals, too. Identifiability conditions of this approach are addressed....
متن کاملDOA estimation with hexagonal arrays
Hexagonal arrays are widely used in practice but have received less attention in the optimum array processing literature. In this paper, we show how unitary ESPRIT can be applied to hexagonal arrays for direction-of-arrival (DOA) estimation. The resulting estimates exhibit good threshold behavior, and are close to the Cramer-Rao bound above threshold. We also show how to use spatial smoothing i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 40 شماره
صفحات -
تاریخ انتشار 1992